

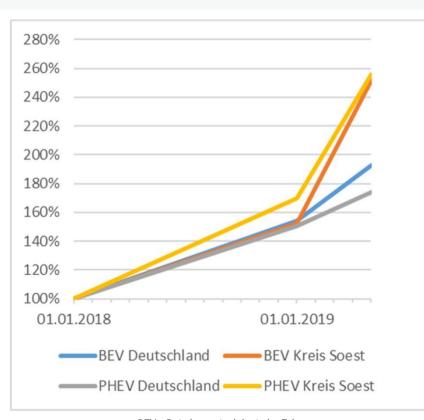
KOMMUNALES ELEKTROMOBILITÄTS-KONZEPT

für den Kreis Soest

- Ein Netz von Ladestationen

Warstein, 9. September 2019 Frank Hockelmann, Kreis Soest

Koordiniert durch:



Entwicklung der Elektromobilität in Deutschland

BEV - Rein batterieelektrische Fahrzeuge PHEV - Plug-In Hybridfahrzeuge

- Seit 1.1.2018 fast Verdoppelung der Elektro-Pkw in Deutschland
- Im aktuellen Jahr bislang h\u00f6here Zuwachsrate als 2018
- Prozentualer Zuwachs im Kreis Soest größer als im Bundesdurchschnitt

	1.1.20181)	1.1.2019 ¹⁾	21.05.2019
BEV Soest	211	322	531 ²⁾
PHEV Soest	148	251	3792)
BEV D	53.861	83.175	ca. 103.000 ³⁾
PHEV D	44.419	66.997	ca. 77.000 ³⁾

¹⁾ Quelle: Kraftfahrtbundesamt (KBA)

²⁾ Information vom Kreis Soest

³⁾Schätzung aufgrund monatlicher Neuzulassungen gem. KBA

Elektromobilität im Kreis Soest

- Zum 21.05.2019 im Kreis Soest zusammen 910 BFV/ PHFV
- Wahrscheinlich ca. 20,000 25,000 BEV/ PHFV im Kreis Soest bis 2030¹⁾²⁾

Die Standorte für öffentliche Ladepunkte sollten begründet gewählt werden

¹⁾ Angabe nach Kraftfahrtbundesamt, BEV - Rein batterieelektrische Fahrzeuge, PHEV - Plug-In Hybridfahrzeuge

²⁾ Unter Annahme der Steigerungsraten gemäß Studie des CAM und ca. 9.000 jährliche Neuzulassungen im Kreis Soest

³⁾ Unter Berücksichtigung der Empfehlung u.a. der EU bzgl. eines Verhältnisses von Ladepunkte zu E-Fahrzeugen von 1:10 bis 1:16,5

Überblick über die Vorgehensweise

Kundensicht

Vorklassifizierung über Gebietstypen

Identifikation von Standorten Identifikation von Kundenprofilen

Ladebedarf

Verweildauer

Einteilung in Kundenkategorien

Bewertung von Standorten nach vorhandenen Kundenkategorien

Analyse der Netzdaten

Netzstruktur und -kapazität bewerten

Excel-Tool

Empfehlungen zu

- Standorten von Ladestationen
- Technischen Umsetzungen

Grundannahmen und Vereinbarungen

- Der Großteil des Ladebedarfs wird heute und in Zukunft durch privates Laden und Laden beim Arbeitgeber gedeckt
- Der Ausbau öffentlich zugänglicher Ladeinfrastruktur kann in den Kommunen unterschiedlich motiviert sein
- Öffentliche Ladepunkte werden von E-Mobilisten bei konkretem Bedarf oder bei "Mitnahmeeffekt" genutzt
- Ladepunkte haben standardmäßig eine Leistung von 22 kW
- Laden sollte auf öffentlich zugänglichen Parkplatzflächen stattfinden
- Der Ladebedarf ergibt sich aufgrund der bislang zurückgelegten und der weiter geplanten Strecke
- Ladebedarf und Verweildauer charakterisieren die Kundenkategorie

Unterscheidung von Kundenkategorien

Fokus der Untersuchung

Langzeitlader

Nachladen bei langer Verweildauer möglich/ erforderlich (z. B. Berufspendler, Anwohner, Touristen)

Mittelzeitlader

Nachladen innerhalb von wenigen Stunden erforderlich (z. B. Touristen, Besucher von diversen Einrichtungen)

Ladebedar Y Verweildauer	Nah \	Mittel	Weit
< 20 min			
< 180 min			
< 6 h			
> 6 h			

Nicht (primär) im Fokus

Fernreisende

Laden mit hoher Leistung in kurzer Zeit (DC-Laden)

"Mitnahmeeffektlader"

Nachladen nicht unbedingt erforderlich, aber "nice to have"

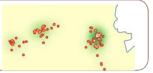
Standortidentifikation aus Kundensicht

Identifikation

- Sammlung und Auflistung möglichst aller relevanten POI¹⁾
- Ermittlung der Adressen und Koordinaten

Klassifizierung

- Zuordnung von Kundenkategorien zu POI
- · Mehrfachzuordnung möglich


Bewertung

 Bewertung der Bedeutung eines POI aufgrund Mehrfachzuordnung

Verdichtung

 Bildung von "Heat-Maps" zur Verdichtung und Identifikation geeigneter Standorte

Priorisierung

• Erstellung einer Prioritätsliste der Standorte

Bewertung aus technischer Sicht

- Das elektrische Netz ist voraussichtlich auch bis 2030 den Anforderungen der zunehmenden Elektromobilität gewachsen
- Lokal können Engpässe entstehen
 - Excel-Tool zur Untersuchung der Auswirkungen der Ladeinfrastruktur auf das elektrische Netz
- In den meisten Fällen weisen Kabel/ Leitungen eine geringere Auslastung als Transformatoren auf

In den kommenden Jahren kann die benötigte öffentliche Ladeinfrastruktur in nahezu allen Fällen problemlos in die vorhandene Netzstruktur integriert werden

Wirtschaftlichkeit

KREIS

SOEST

Klima Schutz

HOCHSCHULE HAMM-LIPPSTADT

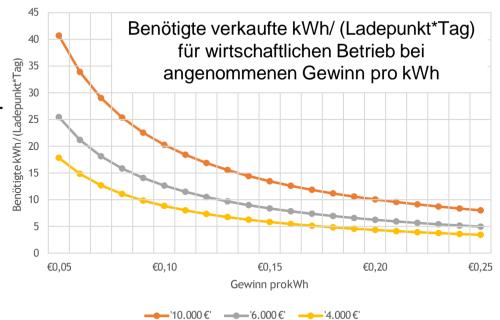
ALLES ECHT!

- Ladeinfrastruktur rechnet sich bei Belegung von ca. 2 Std. pro Tag und Ladepunkt bei 22 kW und einem Tarif mit 5 ct/kWh Gewinn
- Praktische Beispiele noch weit davon entfernt¹⁾

Empfehlung:

- Aufbau der Ladeinfrastruktur mit Augenmaß erforderlich
- Monitoring der Auslastung

Annahmen:


Invest. Ladesäule: 10.000 €/ 6.000 e/ 4.000 €

Zinssatz: 5 % Inflation: 2%

Betrieb/ Instandh. 2 % zzgl. 100 €/a

Finanzierung über 10 Jahre

¹⁾ vgl. VDI Nachrichten Nr. 43 vom 26.10.2018, S. 19

Ergebnisse des Projektes

- Schriftlicher Projektbericht mit detaillierteren Ergebnissen und Präsentation
- Auflistung und Bewertung aller untersuchten ca. 3.400 Standorte mit geografischen Koordinaten
- · Methodisch begründete ca. 230 priorisierte Standorte
- Dateien mit Standortinformationen zur Visualisierung in geografischen Informationssystemen (GIS)
- Planauszüge in PDF-Format
- Excel-Tool zur einfachen Einschätzung der Netzbelastung

Zusammenfassung

- Identifikation von ca. 230 geeigneten Standorten mit erwarteter, ausreichender Auslastung im Kreis Soest
- Trotz grundsätzlich ausreichend erscheinender Dimensionierung des Versorgungsnetzes individuelle technische Prüfung eines Standortes bei Planung und Inbetriebnahme eines Ladepunktes erforderlich
- Wirtschaftlicher Betrieb bei entsprechender Auslastung und ggf. weiterer Maßnahmen (z. B. Werbung) möglich

Empfehlungen

- Schrittweiser und bedarfsorientierter Ausbau der Ladeinfrastruktur.
- Monitoring der tatsächlichen Auslastung
- Motivation privater Investoren zur Investition oder Beteiligung an Ladeinfrastruktur, da oft zusätzliches Interesse zu "reinem Stromverkauf"
- Veröffentlichung von Aktivitäten im Kreis und Informationen zum Thema Elektromobilität auf z. B. gemeinsamer Internetplattform
- Etablierung eines regelmäßigen Erfahrungsaustausches der Experten in den Kommunen

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Kreis Soest

Dezernat 06 Regionalentwicklung

Abteilung 80 Energie, Mobilität, Digitalisierung und Innovation

Frank Hockelmann

Sachgebietsleitung Energie und Klima

Lohdieksweg 6

59457 Werl

Tel.: 02921 30-2642

Mobil.: 0175-7304076

09.09.2019 Fax: **02921 30-2951**

E-Mail: frank.hockelmann@kreis-soest.de

Internet: www.kreis-soest.de

www.klimaschutz-kreis-soest.de

13